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Differential Relationships between Momentum, 
Magnetic Field, Orbit Length, and Revolution 

Frequency  

Steve Werkema 

The purpose of this memo is to put down, in one place, a number of commonly used 
accelerator formulae.  I’ll also comment briefly on the derivation of these relationships.  
Nothing in this memo is my original work.  All of this was developed many years ago by 
the brilliant founders of the field of Accelerator Physics.   
The widely used differential relationships between beam momentum (p), dipole magnetic 
field (B), orbit length (L), and revolution frequency (f) are given in Table 1. 

• Table 1: Differential Relationships between p, B, L, and f 

Number Variables Relations 

1 p, f, and L 2 2dp df dL
p Lf� �� �

2 p, L, and B 2
t

dp dL dB
p L B�� �

3 B, f, and p dB
B

df
f

dp
pt

t
� �

�
�

� �

�

2
2 2

2

4 B, f, and L � �2 2 2
t

dfdB dL
B Lf� � �� � �

Where do these relationships come from? 
The relationships in Table 1 are derived from three basic formulae: 
(1) The formula giving beam velocity (cβ) in terms of orbit length (L) and revolution 

frequency (f): 
 c Lf� �  (1) 

(2) The relationship between particle momentum, magnetic field, and the radius of 
curvature (ρ) of the particle trajectory in a dipole field: 

 p B
e

��  (2) 
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(3) The definition of γt (transition γ): 

 2

1

t

dL dp
L p�
�  (3) 

This definition is only valid for constant field (i.e. dB = 0). 

Relationship Number 1 
The differential of equation (1) is: 

 d dL df
L f

�

�
� �  (4) 

The beam momentum and its differential are related to β and dβ as follows: 
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 (5) 
Substituting dβ/β from equation (5) into equation (4) gives: 

 2

1 dp dL df
p L f�
� �  (6) 

This is relationship number 1 in Table 1.  It turns out to be nothing more exciting than 
simple kinematics. 

Relationship Number 2 
The second formula in Table 1 follows from equations (2) and (3).  Taking differentials 
of both sides of (2) gives: 

 d dp dB
p B

�

�
� �  (7) 

Differential relationship 2 in Table 1 is obtained after one determines the relationship 
between dρ/ρ and dL/L.  It is clear that dρ/ρ and dL/L are proportional to one another – 
the question is: ‘What is the constant of proportionality?’  Temporarily calling the 
constant of proportionality K, equation (7) becomes: 

 

dL dK
L

dp dB
p B

�

�
�

� �

 (8) 
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When dB/B = 0 equation (8) must agree with equation (3).  Thus, 2
tK ��  and equation 

(8) becomes: 

 2
t

dL dp dB
L p B

� � �  (9) 

This is identical to the second differential relationship in Table 1. 

Relationship Number 3 
The third relationship in Table 1 follows from the first two.  Solving equations (6) and (9) 
for dL/L gives: 
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 (10) 

Relationship Number 4 
The last relationship in Table 1 is similarly obtained.  Eliminating dp/p in equations (6) 
and (9) gives: 

 

� �
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 (11) 

Special Cases 
Several useful special cases of these relationships will be considered here. 

B = Constant 
For the special case of constant field, formula number 3 in Table 1 gives: 
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 (12) 

η is the so-called “slip factor”, the definition of which is: 

 2 2

1 1

t

�
� �

� �  (13) 
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CAUTION: This definition is by no means universal.  While all authors define η as the 
difference of the inverse squares of γ and γt, there is no universally accepted order in 
which this difference is taken.  According to the sign convention of equation (13), η is 
negative below transition and positive above transition. 
The transverse movement of the beam, ∆x, due to a change in momentum ∆p, is given by: 

 ( ) ( ) px s D s
p
�

� �  (14) 

where D(s) is the dispersion function evaluated at location s.  Combining equations (12) 
and (14) gives: 

 ( )( ) D s fx s
f�

�
� � �  (15) 

Thus, if the value of η is known, D(s) can be measured at the location of the Beam 
Position Monitors (BPMs) from measurements of the change in beam position and the 
change in revolution frequency. 
The fourth relationship in Table 1 shows how the variations of orbit length and revolution 
frequency are related to each other when the beam energy is changed at constant field.  
This interesting (although not terribly useful) relationship is given by: 

 2
t

dL df
L f

�

�
� �  (16) 

p = Constant 
Another relationship, which is useful for measuring γt, is derived from formula number 3 
in Table 1.  Setting dp = 0 one gets: 

 2

1

t

df dB
f B�
�  (17) 

Thus, by varying the bend field by a known amount and measuring the change in 
revolution frequency one can estimate the value of γt. 
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